The Influence of Fire Interval and Serotiny on Postfire Lodgepole Pine Density in Yellowstone National Park
نویسندگان
چکیده
The time interval between stand-replacing fires can influence patterns of initial postfire succession if the abundance of postfire propagules varies with prefire stand age. We examined the effect of fire interval on initial postfire lodgepole pine (Pinus contorta var. latifolia Engelm.) density in Yellowstone National Park (YNP) following the 1988 fires. We asked whether postfire propagule abundance, measured as prefire percent serotiny, varied with fire interval and could explain patterns in postfire succession. The response of lodgepole pine density to variation in fire interval was explained by spatial and temporal variation in prefire serotiny. At low elevations, postfire lodgepole pine recruitment correlated strongly with prefire percent serotiny, which varied nonlinearly with prefire stand age. As a result, postfire lodgepole pine densities varied nonlinearly with fire interval. In contrast, at high elevations serotiny was low, varied little with stand age and did not influence postfire lodgepole pine densities, although, fire interval was still a significant predictor of postfire densities. At high elevations, fire interval varied nonlinearly with postfire lodgepole densities, presumably due to the temporal variation in propagule abundance from open cones in adjacent unburned stands. Temporal variation in stand-level serotiny at low elevations was best explained by age of individual trees. Logistic regression indicated that trees expected to be serotinous had a low probability of exhibiting serotiny at a young age, with increasing probability as trees matured up to 140 yr. This increase in serotiny with tree age likely accounts for the initial increase in stand-level percent serotiny with stand age at low elevations. The spatial variation in serotiny was correlated with variation in historical fire regimes. Fire interval models derived from lower elevations in YNP indicate that fire occurred historically at 135–185-yr intervals, whereas at higher elevations fires occurred at 280–310-yr intervals. The spatial patterns of serotiny appear to have been influenced by variability in historical fire regimes across the Yellowstone landscape, which has conditioned contemporary successional responses to disturbance.
منابع مشابه
Landscape-scale eco-evolutionary dynamics: selection by seed predators and fire determine a major reproductive strategy.
Recent work in model systems has demonstrated significant effects of rapid evolutionary change on ecological processes (eco-evolutionary dynamics). Fewer studies have addressed whether eco-evolutionary dynamics structure natural ecosystems. We investigated variation in the frequency of serotiny in lodgepole pine (Pinus contorta), a widespread species in which postfire seedling density and ecosy...
متن کاملStand density and age affect tree-level structural and functional characteristics of young, postfire lodgepole pine in Yellowstone National Park
More frequent fire activity associated with climate warming is expected to increase the extent of young forest stands in fire-prone landscapes, yet growth rates and biomass allocation patterns in young forests that regenerated naturally following stand-replacing fire have not been well studied. We assessed the structural and functional characteristics of young, postfire lodgepole pine (Pinus co...
متن کاملTwenty-four years after theYellowstone Fires: Are postfire lodgepole pine stands converging in structure and function?
Disturbance and succession have long been of interest in ecology, but how landscape patterns of ecosystem structure and function evolve following large disturbances is poorly understood. After nearly 25 years, lodgepole pine (Pinus contorta var. latifolia) forests that regenerated after the 1988 Yellowstone Fires (Wyoming, USA) offer a prime opportunity to track the fate of disturbance-created ...
متن کاملConflicting selection from fire and seed predation drives fine-scaled phenotypic variation in a widespread North American conifer.
Recent work has demonstrated that evolutionary processes shape ecological dynamics on relatively short timescales (eco-evolutionary dynamics), but demonstrating these effects at large spatial scales in natural landscapes has proven difficult. We used empirical studies and modeling to investigate how selective pressures from fire and predispersal seed predation affect the evolution of serotiny, ...
متن کاملFrom the ground up: biotic and abiotic features that set the course from genes to ecosystems
Spatial variation in cone serotiny in Rocky Mountain lodgepole pine (Pinus contorta ssp. latifolia) across Yellowstone National Park influences initial pine recruitment after stand-replacing fire with tremendous population, community, and ecosystem consequences. A previous study showed that much of the spatial variation in serotiny results from the balance of selection arising from high frequen...
متن کامل